Journal of Mathematical Chemistry, Vol. 42, No. 4, November 2007 (© 2006) DOI: 10.1007/s10910-006-9116-7

On unicyclic conjugated molecules with minimal energies

Xueliang Li* and Jianbin Zhang

Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, P.R. China E-mail: lxl@nankai.edu.cn

Bo Zhou

Department of Mathematics, South China Normal University, Guangzhou 510631, P.R. China

Received 24 March 2006; revised 13 April 2006

The energy of a graph is defined as the sum of the absolute values of all the eigenvalues of the graph. Let U(k) be the set of all unicyclic graphs with a perfect matching. Let $C_{g(G)}$ be the unique cycle of G with length g(G), and M(G) be a perfect matching of G. Let $U^0(k)$ be the subset of U(k) such that $g(G) \equiv 0 \pmod{4}$, there are just g/2 independence edges of M(G) in $C_{g(G)}$ and there are some edges of $E(G) \setminus M(G)$ in $G \setminus C_{g(G)}$ for any $G \in U^0(k)$. In this paper, we discuss the graphs with minimal and second minimal energies in $U^*(k) = U(k) \setminus U^0(k)$, the graph with minimal energy in $U^0(k)$, and propose a conjecture on the graph with minimal energy in U(k).

KEY WORDS: energy, unicyclic graph, characteristic polynomial, eigenvalue, perfect matching

AMS subject classification: 05C50, 05C35

1. Introduction

Let G be a graph with n vertices and A(G) the adjacency matrix of G. The characteristic polynomial of A(G) is

$$\phi(G,\lambda) = \det(\lambda I - A(G)) = \sum_{i=0}^{n} a_i \lambda^{n-i}$$

The roots $\lambda_1, \lambda_2, \ldots, \lambda_n$ of $\phi(G, \lambda) = 0$ are called the eigenvalues of G. Since A(G) is symmetric, all the eigenvalues of G are real. The energy of G, denoted by E(G), is then defined as $E(G) = \sum_{i=0}^{n} |\lambda_i|$. It is known that [7] E(G) can be expressed as the Coulson integral formula

*Corresponding author.

$$E(G) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{1}{x^2} \ln\left[\left(\sum_{i=0}^{\lfloor n/2 \rfloor} (-1)^i a_{2i} x^{2i}\right)^2 + \left(\sum_{i=0}^{\lfloor n/2 \rfloor} (-1)^i a_{2i+1} x^{2i+1}\right)^2\right] \mathrm{d}x.$$
(1)

Since the energy of a graph can be used to approximate the total π -electron energy of the molecule, it has been intensively studied (see [2, 5, 8, 9, 10, 13, 14]). For a survey of the mathematical properties and results on E(G), see the recent review [6].

In [14], Zhang and Li studied the minimal energies of acyclic conjugated molecules. In this paper, we discuss the minimal energies about unicylic graphs with a perfect matching.

Let U(k) be the set of all unicyclic graphs on 2k vertices with a perfect matching. Let $C_g(G)$ be the unique cycle of G with length g(G), and M(G) be a perfect matching of G. Let $U^0(k)$ be the subset of U(k) such that $g(G) \equiv 0 \pmod{4}$, there are just g/2 independence edges of M(G) in $C_{g(G)}$ and there are some edges of $E(G) \setminus M(G)$ in $G \setminus C_{g(G)}$ for any $G \in U^0(k)$. Let $S_3^1(k)$ be the graph on 2k vertices obtained from C_3 by attaching one pendant edge and k - 2 paths of length 2 together to one of the three vertices of C_3 . Let $S_4^1(k)$ be the graph obtained from C_4 by attaching one path P of length 2 to one vertex of C_4 and then attaching k - 3 paths of length 2 to the second vertex of the path P (figure 1).

Let $S_4^2(k)$ be the graph on 2k vertices obtained from C_4 by attaching k-2 paths of length 2 to one of the four vertices of C_4 . Let $S_4^3(n, k)$ be the graph on 2k vertices obtained from C_4 by attaching one pendant edge and k-3 paths of

Figure 1. Graphs $S_3^1(k)$ and $S_4^1(k)$.

Figure 2. Graphs $S_4^3(k)$ and $S_4^2(k)$.

730

length 2 together to one of the four vertices of C_4 , and one pendant edge to the adjacent vertex of C_4 , respectively (see figure 2).

In this paper, we show that $S_3^1(k)$, $S_4^3(k)$ $(k \ge 43)$ are the graphs with minimal and second minimal energies in $U^*(k) = U(k) \setminus U^0(k)$, respectively, $S_4^1(k)$ be the graph with minimal energy in $U^0(k)$. Finally, we give a conjecture on the graph with minimal energy in U(k).

2. Main results

Lemma 1 ([1, 4, 7]). Let G be a graph with characteristic polynomial $\phi(G, \lambda) = \sum_{i=0}^{n} a_i \lambda^{n-i}$. Then for $i \ge 1$

$$a_i = \sum_{S \in L_i} (-1)^{p(S)} 2^{c(S)},$$

where L_i denotes the set of Sachs graphs of G with *i* vertices, that is, the graphs in which every component is either a K_2 or a cycle, p(S) is the number of components of S and c(S) is the number of cycles contained in S. In addition, $a_0 = 1$.

Let $b_{2i}(G) = (-1)^i a_{2i}$ for $0 \le i \le \lfloor n/2 \rfloor$. Clearly, $b_0(G) = 1$ and $b_2(G)$ equals the number of edges of G.

Lemma 2 ([9]). Let $G \in U(k)$, then $b_{2i}(G) \ge 0$ for $0 \le i \le \lfloor n/2 \rfloor$.

In view of lemma 2, a quasi-order relation is introduced (see [5]). Let $G, G_0 \in U(k)$ and G_0 be a bipartite graph. If $b_{2i}(G) \ge b_{2i}(G_0)$ holds for $0 \le i \le \lfloor n/2 \rfloor$, we say that G is not less than G_0 , written as $G \succeq G_0$. Furthermore, if these inequalities sometime are strict, that is, $b_{2i}(G) > b_{2i}(G_0)$ for some *i*, we say G is more than G_0 , written as $G \succ G_0$. Obviously, from (1) and lemma 2 we have the following increasing property on E:

$$G \succ G_0 \Rightarrow E(G) > E(G_0).$$
 (2)

We denote by M(G) a perfect matching of G, and denote by $\hat{G} = G[E(G) \setminus M(G)]$, where G[E] is the subgraph induced by E, $E(G) \setminus M(G)$ is a set of edges that are not in M(G), but in E(G). For example, $\hat{S}_4^2(k)$, $\hat{S}_4^3(k)$ (see figure 3).

Let $r_j^{(2i)}(G)$ be the number of ways to choose *i* independence edges in *G* such that just *j* edges are of \hat{G} . Obviously, $r_0^{(2i)}(G) = {k \choose i}, r_1^{(2i)}(G) = k {k-2 \choose i-1}$.

Lemma 3. Let $G \in U^*(k)$, $g(G) \equiv 1 \pmod{2}$, $g(G) \ge 5$. Then $E(G) > E(S_4^3(k))$.

Figure 3. Graphs $\hat{S}_4^3(k)$ and $\hat{S}_4^2(k)$.

Proof. Combining lemmas 1, 2 and the case $g(G) \equiv 1 \pmod{2}$, we can obtain

$$b_{2i}(S_4^3(k)) = r_0^{(2i)}(S_4^3(k)) + r_1^{(2i)}(S_4^3(k)) + r_2^{(2i)}(S_4^3(k)) - 2r_0^{(2i-4)}(S_4^3(k) \setminus C_4)$$

= $r_0^{(2i)}(S_4^3(k)) + r_1^{(2i)}(S_4^3(k)) + {\binom{k-3}{i-2}} + (k-3){\binom{k-4}{i-2}} - 2{\binom{k-3}{i-2}},$
 $b_{2i}(G) = r_0^{(2i)}(G) + r_1^{(2i)}(G) + r_2^{(2i)}(G) + \dots + r_{k-1}^{(2i)}(G).$

It suffices to prove that $r_2^{(2i)}(G) \ge (k-3)\binom{k-4}{i-2} - \binom{k-3}{i-2}$. Let v_i (i = 1, 2, ..., g) be all the vertices of C_g , T_i (i = 1, 2, ..., g) be a tree planting at v_i $(v_i \in V(T_i))$, n_i (i = 1, 2, ..., g) be the number of edges of \hat{G} in T_i . Obviously, $k - \frac{g+1}{2} \ge n_1 + n_2 + \cdots + n_g \ge k - g$. Let β_2 be the number of ways to choose two independence edges of \hat{G} .

If there exist at least two trees T_i, T_j such that $n_i, n_j > 0$ $(n_i \ge n_j)$. Then $k - \frac{g+1}{2} \ge 2n_j$.

$$\beta_2 - (k-3) \ge n_j(k-n_j-2) - k + 3 = n_jk - n_j^2 - 2n_j - k + 3 \ge 0.$$

If there is just a tree T_i such that $n_i > 0$, then there exists an edge e of C_g such that e belongs to $E(\hat{G})$ and is not adjacent to v_i . Thus $\beta_2 \ge k - 1 - 2$. Then

$$r_2^{(2i)}(G) \ge (k-3)\binom{k-4}{i-2}.$$

Lemma 4. Let $G \in U^*(k)$. If g(G) = 3, and $G \not\cong S_3^1(k)$, then $E(G) > E(S_4^3(k))$.

Proof. Similarly, it suffices to prove that $\beta_2 \ge k-3$, where v_i, n_i, β_2 are defined as the same as those in the proof of lemma 3.

Case 1. There is just one edge $e \in M(G)$ in C_3 , without loss of generally, let $e = v_1v_2$. Then $n_1 + n_2 + n_3 = k - 2$.

Subcase 1.1: There are at least two trees T_i , T_j such that n_i , $n_j > 0$. Then, similar to the proof of lemma 3, we can obtain $\beta_2 \ge k - 3$.

Subcase 1.2: There is just a tree T_i such that $n_i > 0$. If i = 1 or 2, then $\beta_2 \ge k - 3$. If i = 3, let $P = v_3 u_1 \dots u_{t-2} u_{t-1} u_t$ be the longest path of T_3 from v_3 . Then u_t is a pendant edge and $u_{t-2} u_{t-1} \in E(\hat{G})$. Since $G \not\cong S_3^1(k)$, we have $t \ge 3$ and so $t - 2 \ge 1$. Let x be the number of edges of $E(\hat{G})$ that adjacent to u_{t-2} . Then $\beta_2 \ge k - 2$ when x = 1, and $\beta_2 \ge (x - 1)(k - x) \ge k - 3$ when $x \ge 2$, since $k \ge x + 2$.

Case 2. There is no edge of M(G) in C_3 . Then $\beta_2 \ge n_1 + n_2 + n_3 = k - 3$. \Box

Lemma 5. Let $G \in U^*(k)$. If $g(G) \equiv 2 \pmod{4}$, then $E(G) > E(S_4^3(k))$.

Proof. By lemmas 1 and 2, we have

$$b_{2i}(G) = r_0^{(2i)}(G) + r_1^{(2i)}(G) + r_2^{(2i)}(G) + \dots + r_k^{(2i)}(G) + 2[r_0^{(2i-g)}(G \setminus C_g) + r_1^{(2i-g)}(G \setminus C_g) + \dots + r_{k-g}^{(2i-g)}(G \setminus C_g)].$$

It suffices to prove that $r_2^{(2i)}(G) \ge r_2^{(2i)}(S_4^3(k))$. Similar to the proof of lemma 3, we can obtain the inequality.

Lemma 6. Let $G \in U^*(k)$, $g(G) \equiv 0 \pmod{4}$, and $g(G) \ge 8$.

- (i) If there are less than $\frac{g}{2}-1$ edges of M(G) in $C_g(G)$, then $E(G) > E(S_4^3(k))$.
- (*ii*) If there are just $\frac{g}{2}$ edges of M(G) in $C_g(G)$, then $E(G) > E(S_4^2(k))$.

Proof. (i) By lemmas 1 and 2, we can obtain

$$b_{2i}(G) = r_0^{(2i)}(G) + r_1^{(2i)}(G) + r_2^{(2i)}(G) + \dots + r_k^{(2i)}(G) -2[r_0^{(2i-g)}(G \setminus C_g) + r_1^{(2i-g)}(G \setminus C_g) + \dots + r_{k-g}^{(2i-g)}(G \setminus C_g)].$$

Case 1: There are just $\frac{g}{2} - 1$ edges of M(G) in $C_g(G)$. Then there are $\frac{g}{2} + 1$ edges of $E(\hat{G})$ in $C_g(G)$. Let M_1, M_2 be two matchings in $C_g(G)$ with cardinality $\frac{g}{2}$.

Subcase 1.1: If $M_1 \not\subset E(\hat{G})$ and $M_2 \not\subset E(\hat{G})$, then M_1, M_2 contain at least two edges of $E(\hat{G})$, and one of those contains at least three edges of $E(\hat{G})$. Let M_0 be a matching in $G \setminus C_g(G)$ with cardinality $i - \frac{g}{2}$ such that it contains at least one edge of $E(\hat{G})$, then there are two matchings $M_1 \cup M_0, M_2 \cup M_0$ with cardinality *i* corresponding to M_0 . Thus

$$b_{2i}(G) \ge r_0^{(2i)}(G) + r_1^{(2i)}(G) + \beta_2^0 \binom{k-4}{i-2} - \binom{k-\frac{g}{2}}{i-\frac{g}{2}},$$

where β_2^0 be the number of ways to choose two independence edges of $E(\hat{G})$ such that at least one edge in $C_g(G)$. Let n_1, n_2, \ldots, n_g be defined as the same as those in the proof of lemma 3.

$$\beta_2^0 \ge \left(\frac{g}{2} + 1 - 2\right) \left(n_1 + n_2 + \dots + n_g\right) + \left(\frac{g}{2} - 1\\2\right)$$
$$= \left(\frac{g}{2} - 1\right) \left(k - \frac{g}{2} - 1\right) + \left(\frac{g}{2} - 1\\2\right)$$
$$= k \left(\frac{g}{2} - 1\right) - \left(\frac{g}{2} - 1\\2\right)$$
$$\ge k - 3.$$

Subcase 1.2: Without loss of generally, let $M_1 \subset E(\hat{G})$, then M_2 contains just one edge of $E(\hat{G})$. Similarly, we have

$$b_{2i}(G) \ge r_0^{(2i)}(G) + r_1^{(2i)}(G) + \beta_2^* \binom{k-4}{i-2} - \binom{k-\frac{g}{2}}{i-\frac{g}{2}},$$

where β_2^* be the number of ways to choose two independence edges of $E(\hat{G})$ such that at least one edge in M_1 and no edge in M_2 . Then

$$\beta_2^* \ge \left(\frac{g}{2} - 1\right) \left(n_1 + n_2 + \dots + n_g\right) + \begin{pmatrix} \frac{g}{2} \\ 2 \end{pmatrix}$$
$$= \left(\frac{g}{2} - 1\right) \left(k - \frac{g}{2} - 1\right) + \begin{pmatrix} \frac{g}{2} \\ 2 \end{pmatrix}$$
$$\ge k - 3.$$

Since $\binom{k-3}{i-2} \ge \binom{k-\frac{g}{2}-1}{i-\frac{g}{2}}$, we can obtain $b_{2i}(G) \ge b_{2i}(S_4^3(k))$ for $0 \le i \le \lfloor n/2 \rfloor$, and these equalities do not always hold.

Case 2: There are at most $\frac{g}{2} - 2$ edges of M(G) in $C_g(G)$. Then M_1, M_2 contain at least two edges of $E(\hat{G})$. Similar to case 1, we can have $b_{2i}(G) \ge b_{2i}(S_4^3(k))$ for $0 \le i \le \lfloor n/2 \rfloor$, and these equalities do not always hold. Thus $G \succ S_4^2(k), E(G) \ge E(S_4^2(k))$.

(ii) There are just $\frac{g}{2}$ edges of M(G) in $C_g(G)$. By lemmas 1 and 2 and $G \in U^*(k)$, we have

734

$$\begin{split} b_{2i}(S_4^2(k)) &= r_0^{(2i)}(S_4^3(k)) + r_1^{(2i)}(S_4^3(k)) + r_2^{(2i)}(S_4^3(k)) - 2r_0^{(2i-4)}(S_4^3(k) \backslash C_4) \\ &= r_0^{(2i)}(S_4^3(k)) + r_1^{(2i)}(S_4^3(k)) + \binom{k-2}{i-2} + (k-2)\binom{k-3}{i-2} - 2\binom{k-2}{i-2}, \\ b_{2i}(G) &= r_0^{(2i)}(G) + r_1^{(2i)}(G) + r_2^{(2i)}(G) + \dots + r_k^{(2i)}(G) - 2r_0^{(2i-g)}(G \backslash C_g) \\ &\geqslant r_0^{(2i)}(G) + r_1^{(2i)}(G) + \beta_2'\binom{k-3}{i-2} - \binom{k-\frac{g}{2}}{i-\frac{g}{2}}, \end{split}$$

where β'_2 is the number of ways to choose two independence edges of $E(\hat{G})$ such that both are adjacent to one edge of M(G). Without loss of generality, let $v_1v_2, v_3v_4, \ldots, v_{g-1}v_g \in E(\hat{G})$. Then

$$\beta'_2 \ge n_3 + n_g + n_2 + n_4 + \dots + n_{g-2} + n_1 + g$$

= $k - \frac{g}{2} + \frac{g}{2} > k - 2.$

Combining $\binom{k-2}{i-2} \ge \binom{k-\frac{g}{2}}{i-\frac{g}{2}}$, we can obtain $G \succ S_4^2(k)$, $E(G) > E(S_4^2(k))$.

Similarly, we have

Lemma 7. Let $G \in U^*(k)$, g(G) = 4. (i) If there is just one edge of M(G) in C_4 , then $E(G) > E(S_4^3(k))$. (ii) If there are just two edges of M(G) in C_4 , then $E(G) > E(S_4^2(k))$.

Lemma 8 [4]. Let uv be an edge of G, then

$$\phi(G,\lambda) = \phi(G - uv,\lambda) - \phi(G - u - v,\lambda) - 2\sum_{C \in \mathcal{C}(uv)} \phi(G - C,\lambda),$$

where C(uv) is the set of cycles containing uv; In particular, if uv is a pendant edge with pendant vertex v, then

$$\phi(G,\lambda) = \lambda \phi(G-v,\lambda) - \phi(G-u-v,\lambda).$$

Lemma 9 [12]. $\phi(S_4^3(k), \lambda) < \phi(S_4^2(k), \lambda)$ for all $\lambda \ge \lambda(S_4^1(k))$. In particular, $\lambda_1(S_4^3(k)) > \lambda_1(S_4^2(k))$.

Lemma 10 [3]. $S_3^1(k)$ is the graph with maximal spectral radius in U(k).

From [9,11,12] and lemma 8, we can get

Lemma 11. Let G be a graph with characteristic polynomial $\phi(G, \lambda)$. Then

$$\begin{split} \varphi(S_4^3(k),\lambda) &= (\lambda^2 - 1)^{k-4} (\lambda^8 - (k+4)\lambda^6 + (3k+2)\lambda^4 - (k+3)\lambda^2 + 1), \\ \varphi(S_4^2(k),\lambda) &= \lambda^2 (\lambda^2 - 1)^{k-3} (\lambda^4 - (k+3)\lambda^2 + 2k), \\ \varphi(S_3^1(k),\lambda) &= (\lambda^2 - 1)^{k-2} (\lambda^4 - (k+4)\lambda^2 - 2\lambda + 1), \\ \varphi(S_4^1(k),\lambda) &= \lambda^2 (\lambda^2 - 1)^{k-4} (\lambda^6 - (k+4)\lambda^4 + 4k\lambda^2 - 6). \end{split}$$

Lemma 12. $E(S_4^2(k)) > E(S_4^3(k))$ for $k \ge 29$.

Proof. Let x_1, x_2, x_3, x_4 $(x_1 > x_2 \ge x_3 \ge x_4)$ be the positive roots of $f(x) = x^8 - (k+4)x^6 + (3k+2)x^4 - (k+3)x^2 + 1 = 0$. Let y_1, y_2 $(y_1 > y_2)$ be the two positive roots of $g(y) = y^4 - (k+3)y^2 + 2k = 0$. For convenience, we give the Appendix table. It suffices to prove that $x_1 + x_2 + x_3 + x_4 < y_1 + y_2 + 1$ for $k \ge 50$.

When $k \ge 50$, f(0) > 0, f(0.145) < 0, f(0.62), $f(\frac{\sqrt{5}+1}{2}) < 0$, $f(\sqrt{k+\frac{6}{5}}) > 0$; g(1.4) < 0, $g(\sqrt{k+1}) > 0$, $g(\sqrt{k+2}) < 0$. Then we can obtain that $x_4 < 0.145$, $x_3 < 0.62$, $x_2 < 1.618$, $x_1 < \sqrt{k+\frac{6}{5}}$, $y_2 > 1.4$, $y_1 > \sqrt{k+1}$. Furthermore, by lemma 9 we have $\sqrt{k+\frac{6}{5}} > x_1 > y_1 > \sqrt{k+1}$, $y_1 > x_1 - (\sqrt{k+\frac{6}{5}} - \sqrt{k+1}) > x_1 - 0.0143$. Thus, we have

$$x_1 + x_2 + x_3 + x_4 < 0.145 + 0.62 + 1.618 + x_1$$

= 2.383 + x₁
< 1 + 1.4 + x₁ - 0.0143 < 1 + y₁ + y₂

_	_
г	
_	

Lemma 13. $E(S_4^3(k)) > E(S_3^1(k))$ for $k \ge 43$.

Proof. Let t_1, t_2 $(t_1 > t_2)$ be the two positive roots of $h(t) = t^4 - (k+3)t^2 - 2t + 1 = 0$. By lemma 11, we have

$$E(S_4^3(k)) = 2k - 8 + 2(x_1 + x_2 + x_3 + x_4),$$

$$E(S_4^1(k)) = 2k - 4 + 2(t_1 + t_2).$$

It suffices to prove $x_1 + x_2 + x_3 + x_4 > t_1 + t_2 + 2$ for $k \ge 51$. When $k \ge 51$, f(0) > 0, $f(\frac{\sqrt{5}-1}{2}) < 0$, f(1.597) > 0, $f(\frac{\sqrt{5}+1}{2}) < 0$ and h(0) > 0, h(0.12) < 0. Then $x_2 + x_3 + x_4 - y_2 - 2 \ge 0.618 + 1.597 - 0.12 - 2 = 0.095 = \varepsilon$. Thus $x_2 + x_3 + x_4 > 2 + t_2 + \varepsilon$.

We will prove $t_1 < x_1 + \varepsilon$. It suffices to prove $h(x_1 + \varepsilon) > 0$. When $k \ge 51$, $x_1 > \sqrt{k+1} > 7.1$. Then

$$\frac{h(t)}{t^2} = t^2 - (k+2) - \frac{2}{t} + \frac{1}{t^2}$$

= $t^2 - (k+2) + (\frac{1}{t} - 1)^2 - 1$,
$$\frac{h(x_1 + \varepsilon)}{(x_1 + \varepsilon)^2} \ge (x_1 + \varepsilon)^2 - (k+2) + 0.7381 - 1$$

= $x_1^2 - (k+1) + 2\varepsilon x_1 + \varepsilon^2 - 1.2619$
 $\ge 2\varepsilon x_1 - 1.2619 > 0$.

We have $h(x_1 + \varepsilon) > 0$, and $x_1 + x_2 + x_3 + x_4 > t_1 + t_2 + 2$.

Combining the Appendix table and lemmas 3-8, 12 and 13, we can obtain

Theorem 1. (i) When $5 \le k \le 28$, $S_4^2(k)$ is the graph with minimal energy in $U^*(k)$. (ii) When $29 \le k \le 42$, $S_4^3(k)$ is the graph with minimal energy in $U^*(k)$. (iii) When $k \ge 43$, $S_3^1(k)$, $S_4^3(k)$ are the graphs with minimal and second minimal energies in $U^*(k)$, respectively,

Lemma 14. Let $G \in U^0(k)$, g(G) = 4, $G \not\cong S_4^1(k)$. Then $E(G) > E(S_4^1(k))$.

Proof. Let x be the number of edges in $E(\hat{G})$ that are adjacent to vertices of C_4 except for two edges in C_4 . Since there are just two edges of M(G), $G \setminus C_4$ contains some edges of $E(\hat{G})$. Then $1 \leq x \leq k - 3$. By lemmas 1 and 2, we can obtain

$$\begin{split} b_{2i}(G) &= r_0^{(2i)}(G) + r_1^{(2i)}(G) + r_2^{(2i)}(G) + \dots + r_k^{(2i)}(G) \\ &\quad -2 \left[r_0^{(2i-4)}(G \backslash C_4) + r_1^{(2i-4)}(G \backslash C_4) + \dots + r_{k-4}^{(2i-4)}(G \backslash C_4) \right] \\ &\geqslant r_0^{(2i)}(G) + r_1^{(2i)}(G) + x \binom{k-3}{i-2} + 2(k-2-x)\binom{k-4}{i-2} \\ &\quad + (x-1)\binom{k-4}{i-2} - \binom{k-2}{i-2} - (k-2-x)\binom{k-4}{i-3} \\ &= r_0^{(2i)}(G) + r_1^{(2i)}(G) + x \left[\binom{k-3}{i-2} - \binom{k-4}{i-2} + \binom{k-4}{i-3} \right] \\ &\quad + 2(k-2)\binom{k-4}{i-2} - \binom{k-4}{i-2} - (k-2)\binom{k-4}{i-3} \\ &\geqslant r_0^{(2i)}(G) + r_1^{(2i)}(G) + 1 \cdot \left[\binom{k-3}{i-2} - \binom{k-4}{i-2} + \binom{k-4}{i-3} \right] \\ &\quad + 2(k-2)\binom{k-4}{i-2} - \binom{k-4}{i-2} - (k-2)\binom{k-4}{i-3} \\ &= b_{2i}(S_4^1(k)), \end{split}$$

where the equality holds if and only if $G \cong S_4^1(k)$. So, we have $G \succ S_4^1(k)$, $E(G) > E(S_4^1(k))$.

Lemma 15. Let $G \in U^{0}(k)$, $g(G) \ge 8$. Then $E(G) > E(S_{4}^{1}(k))$.

Proof. By lemmas 1 and 2, we can obtain

737

X. Li et al. / Conjugated Molecules with Minimal Energies

$$b_{2i}(S_4^1(k)) = r_0^{(2i)}(S_4^1(k)) + r_1^{(2i)}(S_4^1(k)) + r_2^{(2i)}(S_4^1(k))r_3^{(2i)}(S_4^1(k)) -2[r_0^{(2i-4)}(S_4^1(k)\backslash C_4) + r_1^{(2i-4)}(S_4^1(k)\backslash C_4)] = r_0^{(2i)}(S_4^1(k)) + r_1^{(2i)}(S_4^1(k)) + {\binom{k-3}{i-2}} + 2(k-3){\binom{k-4}{i-2}} -{\binom{k-2}{i-2}} - (k-3){\binom{k-4}{i-3}}$$

$$\begin{split} b_{2i}(G) &= r_0^{(2i)}(G) + r_1^{(2i)}(G) + r_2^{(2i)}(G) + \dots + r_k^{(2i)}(G) \\ &- 2[r_0^{(2i-g)}(G \setminus C_g) + r_1^{(2i-g)}(G \setminus C_g) + \dots + r_{k-g}^{(2i-g)}(G \setminus C_g)] \\ &\geqslant r_0^{(2i)}(G) + r_1^{(2i)}(G) + r_2^{(2i)}(G) - r_0^{(2i-g)}(G \setminus C_g) - r_1^{(2i-g)}(G \setminus C_g) \\ &\geqslant r_0^{(2i)}(G) + r_1^{(2i)}(G) + r_2^{(2i)}(G) - \binom{k - \frac{g}{2}}{i - \frac{g}{2}} - (k - \frac{g}{2} - 1) \binom{k - \frac{g}{2} - 2}{i - \frac{g}{2} - 1}. \end{split}$$

Let v_i (i = 1, 2, ..., g) be all the vertices of C_g , T_i (i = 1, 2, ..., g) be a tree planting at v_i $(v_i \in V(T_i))$, v_i (i = 1, 2, ..., g) be the number of edges in \hat{G} . Obviously, $n_1 + n_2 + \cdots + n_g = k - \frac{g}{2}$. Let β_2 be the number of ways to choose two independence edges of \hat{G} such that at least one edge in $C_{g(G)}$. Then

$$\beta_2 \ge (\frac{g}{2} - 1)(n_1 + n_2 + \dots + n_g) + {\binom{5}{2}} \\ = (\frac{g}{2} - 1)(k - \frac{g}{2}) + {\binom{g}{2}} \\ \ge 2k + 5.$$

We have $r_2^{(2i)}(G) > {\binom{k-3}{i-2}} + 2(k-3){\binom{k-4}{i-2}}$. Since ${\binom{k-2}{i-2}} > {\binom{k-\frac{g}{2}}{i-\frac{g}{2}}}$, $(k-3){\binom{k-4}{i-3}} > (k-\frac{g}{2}-1){\binom{k-\frac{g}{2}-2}{i-\frac{g}{2}}}$. We have $G \succ S_4^1(k)$, $E(G) \ge E(S_4^1(k))$.

Using lemmas 14 and 15, it is not difficult to obtain the following theorem.

Theorem 2. $S_4^1(k)$ is the graph with minimal energy in $U^0(k)$.

By theorems 1 and 2, lemmas 14 and 15, and the Appendix table, we can obtain **Theorem 3.** Either $S_3^1(k)$ or $S_4^1(k)$ is the graph with minimal energies in U(k).

Remark. We can obtain the energies of $S_3^1(k)$ or $S_4^1(k)$ by computation for some positive integer k. When k = 100, 1000, 10000, the result of the computation is $E(S_3^1(k)) > E(S_4^1(k))$. But we have not found a proper way to prove it. So, we propose

Conjecture 1. $S_4^1(k)$ is the graph with minimal energies in U(k).

Appendix table.					
n = 2k	$E(S_4^1(k))$	$E(S_3^1(k))$	$E(S_4^2(k))$	$E(S_4^3(k))$	
k = 5	12.6598	11.4066	11.5696	11.9997	
k = 6	14.9516	13.7663	13.9820	14.3547	
k = 7	17.2319	16.1047	16.3626	16.6890	
k = 8	19.5020	18.4251	18.7178	19.0058	
k = 9	21.7628	20.7601	21.0521	21.3076	
k = 10	24.0153	23.0219	23.3689	23.5965	
k = 11	26.2602	25.3019	25.6707	25.8739	
k = 12	28.4982	27.5715	27.9595	28.1411	
k = 13	30.7297	29.8318	30.2368	30.3992	
k = 14	32.9553	32.0870	32.5039	32.6839	
k = 15	35.1754	34.0064	34.7619	34.8913	
k = 16	37.3904	36.5652	37.0116	37.1268	
k = 17	39.6006	38.7960	39.2538	39.3559	
k = 18	41.8064	41.0209	41.4991	41.5793	
k = 19	44.0079	43.2403	43.7182	43.7972	
k = 20	46.2055	45.4545	45.9414	46.0101	
k = 21	48.3994	47.6641	48.1592	48.2183	
k = 22	50.5897	49.8691	50.3720	50.4221	
k = 23	52.7767	52.0700	52.5801	52.6218	
k = 24	54.9605	54.2669	54.7838	54.8176	
k = 25	57.1413	56.4602	56.9834	57.0098	
k = 26	56.4602	58.6499	59,1791	59,1985	
k = 27	61.4944	60.8362	61.3712	61.3839	
k = 28	63.6669	63.0194	63.5597	63.5661	
k = 29	65.8370	65.1996	65.7450	65.7454	
k = 30	68.0046	67.3770	67.9272	67.3922	
k = 31	70.1699	69.5516	70.1065	70.0957	
k = 32	72.3331	71.7236	72.2829	72.2669	
k = 33	74.4941	73.8931	74.4566	74.4357	
k = 34	76.6530	76.0623	76.6277	76.6020	
k = 35	78.8100	78.2251	78,7964	78.7662	
k = 36	80.9651	80.3878	80.9627	80.9281	
k = 37	83.1184	82.5483	83.1268	83.0880	
k = 38	85.2669	84.7068	85.2886	85.2458	
k = 39	87.4197	86.8634	87.4484	87.4017	
k = 40	89.5678	89.0180	89.6062	89.5558	
k = 41	91.7144	91.1709	91.7621	91,7080	
k = 42	93.8594	93.3219	93.9161	93.8585	
k = 43	96.0029	95.4713	96.0683	96.0074	
k = 44	98.1449	97.6090	98.2187	98.1546	
k = 45	100.2856	99.7652	100.3675	100.3002	
k = 46	102.4249	101.9099	102.5146	102.4443	
k = 47	104.5628	104.0530	104.6602	104.5869	
k = 48	106.6994	106.1947	106.8043	106.7281	
k = 49	108.3350	108.8348	108.9469	108.8679	
k = 50	110.4739	110.9690	111.0880	111.0064	

Table 1 ppendix table

References

- [1] N. Biggs, Algebraic Graph Theory, 2nd ed. (Cambridge University Press, Cambridge, MA, 1993).
- [2] G. Caporossi, D. Cvetković, I. Gutman and P. Hansen, Variable neighborhood search for extremal graphs. 2. Finding graphs with external energy. J. Chem. Inf. Comput. Sci. 39 (1999) 984–996.
- [3] A. Chang and F. Tian, On the spectral radius of unicyclic graphs with perfect matchings. Linear Algebr Appl. 370 (2003), 237–250.
- [4] D. Cvetkoić, M. Doob and H. Sachs, Spectra of Graphs-Theory and Applications (Academic Press, New York, 1980).
- [5] I. Gutman, Acyclic systems with extremal Hückel π -electron energy, Theoret. Chim. Acta (Berlin) 45 (1977) 79–87.
- [6] I. Gutman, The energy of a graph: old and new results, in: Algebraic Combinatorics and Applications, eds. A. Betten, A. Kohnert, R. Laue and A. Wassermann (Springer-Verlag, Berlin, 2001), pp. 196–211.
- [7] I. Gutman and O.E. Polansky, *Mathematicl Concepts in Organic Chemistry* (Springer-Verlag, Berlin, 1986).
- [8] I. Gutman and N. Tronajstić, Graph theory and molecular orbital: the Hückel rule. J. Chem. Phys. 64 (1976) 4921–4925.
- [9] Y. Hou, Unicyclic graphs with minimal energy. J. Math. Chem. 29 (2001) 163–168.
- [10] Y. Hou, Bicyclic graphs with minimum energy. Linear Multilinear Algebr. 49 (2001) 347-354.
- [11] Y. Hou and J. Li, Bounds on the largest eigenvalues of trees with a given size of matchings. Linear Algebr. Appl. 342 (2002) 203–217.
- [12] X. Li, J. Zhang and B. Zhou, The spread of unicyclic graphs with given size of maximum matchings. J. Math. Chem., in press 2006.
- [13] J. Rada and A. Tineo, Polygonal chains with minimal energy. Linear Algebr. Appl. 372 (2003) 333–344.
- [14] F. Zhang and H. Li, On acyclic conjugated molecules with minimal energies. Discrete Applied Math. 92 (1999) 71–84.